If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4r^2+3r=0
a = 4; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·4·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*4}=\frac{-6}{8} =-3/4 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*4}=\frac{0}{8} =0 $
| 8f=+5f+7 | | 2r+4=-12-6r | | 3(4x-3)+8=23 | | 3y+10=2y+13 | | x2+5x=176 | | 11x+4=-5+20 | | b/2+1/3=17 | | R=+r | | -6.8(x-3.25)=27.2 | | 9x+2=6x+(-10) | | 6.7x=5.x+12.3 | | -7y-1=34 | | 11d+6=72 | | -7v=-2v | | 4n+n=10+3n | | 1/2y+9=1/10y | | -2=-z/4 | | 2(a=4)=2a-8=4a | | 175m-100m+42,750=45,900-150m | | (2n+4)^2=(2n+4) | | 11d+6=66 | | 0.04z^2+0.04z-0.07=0.00 | | -3=3/2-(3w÷5-w) | | 175m-100m+42,750=45,900+150m | | 9x+6(200+1x)=1566 | | 2x-7=1;(11,3) | | m=100(1+8/400) | | 7x-24=3x+8 | | -3=3/2-3w÷5-w | | 1/2y-6=1/7y | | 12x=+12x | | 1=1/3(6t+3) |